

Chell Instruments Ltd
Folgate House
Folgate Road
North Walsham
Norfolk NR28 0AJ
ENGLAND

Tel: 01692 500555
Fax: 01692 500088

 microDAQ-MK2

Pressure Scanner
Acquisition System

USER PROGRAMMING GUIDE

e-mail:- info@chell.co.uk

Visit the Chell website at:
http://www.chell.co.uk

 900204-1.0

mailto:service@chell-instruments.co.uk
http://www.chell.co.uk/

Please read this manual carefully before using the instrument.

Use of this equipment in a manner not specified in this
manual may impair the user’s protection.

Chell Document No. 900204 : Issue 1.0
ECO: - Date: 05th May 2016

Chell’s policy of continuously updating and improving products means that this manual may contain
minor differences in specification & functionality from the actual instrument supplied.

Contents

1. Introduction. .. 1

2. User Command Protocol. ... 2

2.1 Command Packet. .. 2

2.2 Acknowledgement. ... 2

2.3 User Commands. .. 2

3. Status Data Format. ... 5

4. microDAQ Communication Channels... 6

4.1 TCP ... 6
4.1.1 Overview. .. 6
4.1.2 Connection. ... 6
4.1.3 TCP Protocol .. 6
4.1.4 TCP Data Rate. ... 6
4.1.5 Control Via TCP. .. 7

4.2 UDP .. 8
4.2.1 Overview. .. 8
4.2.2 Connection. ... 8
4.2.3 Chell UDP Protocol .. 8
4.2.4 UDP Data Rate. .. 8
4.2.5 Control Via UDP. ... 8
4.2.6 IENA specification .. 9

4.3 CAN .. 10
4.3.1 Overview. .. 10
4.3.2 CAN Baudrate... 10
4.3.3 CAN Protocol. .. 10
4.3.4 CAN Data Rate. .. 12
4.3.5 Control Via CAN. ... 12

4.4 Internal RAM. .. 13
4.4.1 Overview. .. 13
4.4.2 Internal RAM Protocol. .. 13
4.4.3 Internal RAM Data Rate. .. 13
4.4.4 Internal RAM Dump. .. 13

5. Valve Control user commands ... 14

Page 1

1. Introduction.

From power up, the microDAQ-Mk2 reads its non volatile setup information and calibration, and
after applying these settings is then ‘up and running’, reading the scanner and delivering calibrated
data. Although for many applications this is enough, more demanding applications may need to
control the data delivery, request data rezero operations and more.

The microDAQ-Mk2 has the same user interface protocol taken from the microDAQ system,
allowing remote access to the essential commands required when integrating the unit into an
instrumentation system. Commands may be sent over any of the unit’s communication channels,
whether the current active data channel or not. A simple block parity check adds security to the
command protocol, and a correctly received command may be acknowledged if required.

The following sets out the essentials of the command protocol, the data packet format for all
channels in addition to the message identifier arrangement for the CAN channel.

This document also details the user commands for valve controls that are found in the flightDAQ
and the microQDVP module which use the same command protocol.

This document version supports V2.0.2 of the microDAQ-Mk2 firmware and V2.0.2 of the flightDAQ
firmware. If using earlier firmware then some user commands and/or parameters may be invalid.

Page 2

2. User Command Protocol.

2.1 Command Packet.
The command protocol is based around a simple delimited control packet, allowing easy
identification of command start and end. The packet includes a block parity byte increasing the
robustness of transmission; the packet format is shown in Figure 2.1.

> (ASCII 62) Command Parameter Parity < (ASCII 60)

Figure 2.1 Command Frame Format.

The command byte values are defined in the following section, and may or may not require a
parameter byte, for example data rate. The parity byte is an even block parity of all bytes (other
than itself), including the delimiters. Calculation for parity bit n is therefore the sum of each bit n
using modulo 2 arithmetic.

For a command not requiring a parameter, an arbitrary dummy byte should be used. This can be
any value as the number is not processed other than in determining the parity of the command
packet.

2.2 Acknowledgement.
A command packet is positively acknowledged if it is correctly formatted and the parity byte is
correct. A positive acknowledgement is denoted by the transmission of ASCII 42 ('*'), a negative
acknowledge indicating an invalid command by ASCII 33 ('!'). Recognised command values are
then acted upon, though unrecognised values are discarded.

2.3 User Commands.
The available user command set is summarised in Figure 2.2.

Command
(* DTC only)

Byte,
Char/
ASCII

Parameter Description

Standby S/83 None Set all data streaming off.

Reset R/82 None Request a soft device reset - microDAQ is reinitialised.

Rezero Z/90 None Request a rezero, the number of samples as set in the
microDAQ webserver.

Derange * D/68 None Calibration is rebuilt with the appropriate deranging factor
applied, the DTC scanner deranging gain is switched into
circuit.

Rebuild
Calibration

C/67 None The calibration is rebuilt for the current temperature, using the
active microDAQ settings

Rezero and
Rebuild

G/71 None Requests a rezero followed by a calibration table rebuild, with
the calculated zero offsets being applied to the calibration
data.. Note these rezero offsets are separate from any normal
rezero that may be performed afterwards.

Rate V/86 byte = 0xab

a = 1 TCP / UDP
a = 2 CAN

Adjust the data delivery rate for each communication channel.
The upper nibble of the parameter byte selects which
communication channel, while the lower selects its data rate.

Page 3

a = 3 Internal RAM

For TCP / UDP:
b = 0 : Off
b = 1 : 1000Hz
b = 2 : 625Hz
b = 3 : 500 Hz
b = 4 : 400 Hz
b = 5 : 312 Hz
b = 6 : 225 Hz
b = 7 : 200 Hz
b = 8 : 150 Hz
b = 9 : 100 Hz
b = 10 : 50 Hz
b = 11 : 25 Hz
b = 12 : 20 Hz
b = 13 : 10 Hz
b = 14 : 5 Hz
b = 15 : 1 Hz

For CAN & Internal
RAM:
b = 0 : Off
b = 1 : 1000 Hz
b = 2 : 750 Hz
b = 3 : 625 Hz
b = 4 : 500 Hz
b = 5 : 312 Hz
b = 6 : 100 Hz
b = 7 : 50 Hz
b = 8 : 25 Hz
b = 9 : 10 Hz
b = 10 : 5 Hz
b = 11 : 2 Hz
b = 12 : 1 Hz

CAN & Internal RAM ‘comms’ have the same available data
rates.

Protocol P/80 byte = 0xab

a = 1 TCP / UDP
a = 2 CAN

b = 0 - 16 bit LE
b = 1 - 16 bit BE
b = 2 - Engineering
Units

Permits the changing of the data protocol. The abbreviations
LE and BE in the table refer to little and big endian respectively,
denoting whether the less significant byte is sent first or last.

Pressure data are available in engineering units over both
RS232 and TCP connections, though only binary data are
available with CAN and Internal RAM.

Binary data provides pressure scaled as unsigned integers to
the operating full scale, eg for 16 bit resolution, 0 to 65535
represents -FSD to +FSD.

Stream ON 1/49 1 – TCP / UDP
2 - CAN
3 - Internal RAM
4 - Internal RAM (stop
on full)

Enable the data delivery for the chosen channel. The delivery
rate is as selected in microDAQsetup, unless it is modified via
the Rate command.

Internal RAM data streaming will either log continuously,
wrapping when the end of available RAM is reached, or will stop
when the RAM is full, depending on parameter.

Stream OFF 0/48 1 - TCP / UDP
2 - CAN
3 - Internal RAM

Disable the data delivery for the chosen channel.

Get Status ?/63 0 : Short
1 : With temp.
2 : Full
3 : Pressure reading
4 : Temp. readings
5 : Excitation reading

Return a status packet from the microDAQ. Three main versions
are available, 'short', 'with temp.' and 'full'. Short returns status
byte information showing current operating state only, whereas
'full' returns microDAQ setup options and temperature data in
addition. 'With temp.' returns the status and temperature
information intended for continuous temperature monitoring

Page 4

6 : Hall sensor read
7 : Firmware ID
8 : Unit serial number
9 : Scanner serial
number

applications. The data format is documented in a separate
section.

Additional readings poll raw values for temperature and
pressure as read from the scanner, as well as other fields as
indicated in the table

Channels H/72 byte = 0xab

a = 1 TCP / UDP
a = 2 CAN
a = 3 Internal RAM

b = 0 - 16
b = 1 - 32
b = 2 - 48
b = 3 - 64

Set the number of active channels returned to the user for a
data channel. Setting a value greater than the current system
maximum channels (set via setup/dtc scanner read or by the
Maximum Channels command) results in the maximum
channels value being used.

Maximum
Channels

M/77 0 - 16
1 - 32
2 - 64

Set the system maximum channels, ie the number of channels
read from the scanner. Allows the dynamic alteration of the
effective per channel sampling rate

Poll O/79 1 - TCP / UDP
2 – CAN

Request a single data packet (in the current active format) for
the channel selected. Data streaming should be set off before
using this command. Note that there is no positive
acknowledge for this command. This command is not valid for
logging to Internal RAM.

Span A/65 None Request a ‘span’ operation. The unit should have been recently
rezeroed, then the appropriate span pressure (as selected from
the setup software) applied to the scanner. Requesting a span
operation will then calculate the span correction coefficient for
each channel. All rezero values and span coefficients are then
written to the unit’s EEPROM (NOT to the scanner), and the
calibration tables rebuilt using these new values.

Reset Linear
Calibration

E/69 None Resets the linear calibration (ie zero and span values) held
within the unit to 0 and 1.0 respectively for all channels. A
calibration table rebuild is then performed.

Hardware
Trigger

T/84 byte = 0xab

a = 0 Disable
a = 1 Enable

b = 1 TCP / UDP
b = 2 CAN
b = 3 Internal RAM
b = 4 Internal RAM
(stop on full)

Enables or disables the hardware trigger on the selected
channel. Note that there is no positive acknowledge for this
command.

Assuming a valid hardware trigger is detected for the duration,
Internal RAM data streaming will either log continuously,
wrapping (and therefore overwriting) when the end of available
RAM is reached, or will stop when the RAM is full (and
automatically disable the hardware trigger), depending on the
parameter.

Start Internal
RAM Dump

I/73 1 - TCP / UDP
2 - CAN

Starts the internal RAM dump, sending data using the comms
channel chosen by the parameter. The first packet is sent
immediately and consists of a 9 byte header (only 6 bytes for
CAN - see later)

Internal RAM
Dump
Handshake

J/74 None Handshake command to indicate previous packet was received.
Must be sent after header packet & all subsequent data
packets.

Figure 2.2, The Available User Command Set for the microDAQ.

Page 5

3. Status Data Format.

Status data is not currently supported over the CAN channel, however for TCP connections, status
data may be requested from the microDAQ as three forms – ‘short’, ‘full’ and ‘with temp’. The short
form returns 4 bytes, the 16 bit status word delimited by the ASCII characters ">" and "<", the less
significant byte is returned before the more significant. The bit assignment is shown in figure 3.1.

15 I-daq
conn.

Hardware
Trigger
Active

Derange
acvtive

DTC
conn.

CAN
Active

TCP
Active

Reserv
ed

Cal.
table

Span Rezero

Figure 3.1, Status word bit assignment.

Requesting the status 'with temp.' returns the short status 4 bytes, followed by the temperature
data. For a non DTC scanner, a single value (ASCII unsigned 14 bit) representing the read
temperature voltage is appended to the status bytes. For a DTC application, all active channels
are returned in ascending order as comma delimited ASCII engineering units (ie degrees C).

The 'full' status data contains the above, followed by fields for the setup options of the microDAQ.
Each field is comma delimited, and its function is indicated in plain text between square
parentheses. On/off is indicated by 1/0. An example 'full' status string is shown in figure 3.2 for a
microDAQ with a non DTC scanner. Note that the figure for full scale includes the derange constant
(ie scanner full scale x derange constant) if the derange option has been selected in setup.

Figure 3.2, Full status information.

*>Mó<8198,[Full scale] 15.00000000,[Active channels] 32,[DTC active]
0,[CAN channels] 32,[TCP channels] 32,[CAN rate] OFF,[TCP rate] OFF,[CAN
protocol] 16 LE,[TCP protocol] 16 LE,[Press. input impulse] 1,[Temp. input
impulse] 0,[Press. input power] 3,[Temp. input power] 0,[Press. output power]
0,[Reset on delivery] 0,[Temp. compensation] 0,[Period] 10m,[IP]
0.0.0.0,[Mask] 0.0.0.0,[Gateway] 0.0.0.0,[CAN timing] (BRP) 5 (TSEG1) 2
(TSEG2) 0 (SJW) 1,[CAN message] 00n,[Rezero order] 4,

Page 6

4. microDAQ Communication Channels.

4.1 TCP
4.1.1 Overview.
The microDAQ’s TCP channel affords it the ability to stream real time pressure data at high speed
over standard 100Mbit Ethernet connections.

4.1.2 Connection.
When using the TCP/IP channel, the microDAQ is programmed to listen on its local port number
101. It will respond to a connection request, connect and immediately start streaming data if it has
been setup to use the TCP channel. Note that the microDAQ only supports one TCP connection.

Setup requires the microDAQ to be given an IP address, and the network’s subnet mask. It is
possible either to run the microDAQ over a local Ethernet connection, or directly from a PC’s
network card, as long as a crossover cable is used. A dual network card (or 2 cards) may be used,
however care should be taken about network routing, as similar subnets for two network
connections on a single Windows ® machine can cause the microDAQ not to be seen on the
second card. The microDAQ will respond to a ‘ping’ instruction for the purposes of setup and
troubleshooting.

4.1.3 TCP Protocol
With TCP channel selected Calibrated pressure data are streamed continuously over the TCP
interface. TCP supports 3 different data formats as shown in Figure 4.1. The binary data formats
scale the data to 0 to 65535 representing -/+ full scale respectively. Binary protocols require less
communications bandwidth as well as less processor overhead within the microDAQ; it is
recommended that engineering unit conversions be applied at the client.

In the case of the TCP channel, the engineering unit protocol should be avoided if possible, due to
the need to declock the microDAQ’s internal clock and scanner addressing to half of the chosen
acquisition rate (due to internal issues regarding string handling). The 16 bit little ended protocol is
most efficient from the microDAQ’s viewpoint, the data being calibrated and spanned to 0 to 65535
(zero at 32767). Scaling to floating point full scale is better achieved within a PC client application
where there is more processing power available. Figure 4.2 shows the available data packet
formats over TCP.

Protocol Example data format Note

16 bit LE 0x00 0xFF 0x00 CH1LSB CH1MSB CH2LSB
CH2MSB CH3LSB…..CHNLSB CHNMSB

3 byte (00, FF, 00) header identifies
start of packet. All active channels
(CH1 to CHN) then sent LSB first,
no delimiters.

16 bit BE 0x00 0xFF 0x00 CH1MSB CH1LSB CH2MSB
CH2LSB CH3MSB….. CHNMSB CHNLSB

16 bit data, 3 byte header, no
delimiters, MSB first.

Eng. Units *,#.#####,#.#####,#.#####,#.###
##,#.#####,#.#####……..#.#####

ASCII readable string, * (ASCII 42)
as header, active channels in
ascending order, 5 decimal places,
comma delimited.

Figure 4.1, Data Packet Protocol, TCP Channel.

4.1.4 TCP Data Rate.
The data delivery rate is selected from the setup program, and the following values are available
(Hz) – 1, 5, 10, 20, 25, 50, 100, 150, 200, 225, 312, 400, 500, 625, 1000. Although the system
endeavours to deliver the rate with maximum accuracy, ultimate responsibility for data timing lies
with the user’s host system.

Page 7

Note that since the scanners are addressed at a fixed channel rate (20kHz if configured for Gen1
scanners, 50kHz if configured for Gen2 scanners), requesting a data delivery of more than 20k/No.
Channels (Gen1) or 50k/No. Channels (Gen2) - i.e. 312Hz for a 64 channel Gen 1 scanner) -
wastes resources and in some cases can actually cause the microDAQ to hang and require a
power cycle.

The data rate over TCP is vulnerable to low level operating system considerations, in particular any
‘delayed acknowledgement’ algorithm. Windows ® attempts to suppress too many
acknowledgments for small data packets swamping a network by inserting a 200ms (default) delay
in the generation of a second acknowledgement to a communicating device. Since the microDAQ’s
communication consists of many small packets at a high repeat rate, this algorithm has a
catastrophic effect on the microDAQ’s delivered bandwidth (effectively limiting it to tens of Hz).
The bottleneck can be removed by altering/adding a value of the registry key:
HKLM\System\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\{adapter GUID}
(HKLM = HKEY_LOCAL_MACHINE; {adapter GUID = the network adapter being used by the
Windows PC), though this should be done only in consultation with the network administrator.
In Windows 2000, the DWORD value TcpDelAckTicks should be set to 0 in the registry key.
In Windows XP (must have SP1 or later installed), the DWORD value TcpAckFrequency should be
set to 1 in the registry key.

Also note that the TCP channel of the microDAQ is subject to buffering both within the unit itself
(the size of the buffer depending on number of channels and data rate), and within Windows ®
itself. At low data rates, it is possible to receive single complete data packets, however as the data
rate increases Windows ® is more likely to deliver chunks of data 2k to 4k bytes in length, with
arbitrary boundaries with respect to microDAQ’s data packets. User software should take this into
account to avoid losing data.

Please note that if streaming at high data rates it is essential that a good network infrastructure is
used. It is recommended that any streaming is performed over a ‘private’ network (i.e.
disconnected from any corporate network structure) to reduce the number of packets flying around
the network. It is also highly recommended that a high speed managed network switch with a large
store and forward buffer is used between the microDAQ and client PC, particularly if several
microDAQs are being used together to acquire data.

4.1.5 Control Via TCP.
A positive acknowledgement is returned as ‘**’ and a negative acknowledgement as ‘!!’.

The argument regarding loss of acknowledgements in the data stream holds good for the TCP
channel, and it is recommended that a ‘Stream Off’ or ‘Standby’ is sent before any other
command.

Page 8

4.2 UDP
4.2.1 Overview.
As with TCP the microDAQ’s UDP channel affords it the ability to stream real time pressure data at
high speed over standard 100Mbit Ethernet connections.
The microDAQ supports two data stream formats, the Chell data stream format and an IENA
specification output, which can be setup from the web server.

4.2.2 Connection.
When using the UDP/IP channel, the microDAQ is programmed to listen on its local port number
101. It will respond to a connection request, connect and immediately start streaming data if it has
been setup to use the UDP channel with remote IP address and port configured in the settings.

Setup requires the microDAQ to be given an IP address, and the network’s subnet mask, these will
be the same as for the TCP, however in addition to those UDP also needs a remote IP address and
remote port number. It is possible either to run the microDAQ over a local Ethernet connection, or
directly from a PC’s network card, as long as a crossover cable is used. A dual network card (or 2
cards) may be used, however care should be taken about network routing, as similar subnets for
two network connections on a single Windows ® machine can cause the microDAQ not to be seen
on the second card. The microDAQ will respond to a ‘ping’ instruction for the purposes of setup
and troubleshooting.

4.2.3 Chell UDP Protocol
With UDP channel selected Calibrated pressure data are streamed continuously over the UDP
interface. UDP supports 2 different data formats as shown in Figure 4.2. The binary data formats
scale the data to 0 to 65535 representing -/+ full scale respectively. Binary protocols require less
communications bandwidth as well as less processor overhead within the microDAQ; it is
recommended that engineering unit conversions be applied at the client.

Protocol Example data format Note

16 bit LE NanoDAQ_serial, Packet_Num, CH1LSB
CH1MSB CH2LSB CH2MSB
CH3LSB…..CHNLSB CHNMSB

32 bit representation of serial
number identifies start of the
packet then a 32 bit packet
number, autoincrmenting with each
packet. All active channels (CH1
to CHN) then sent LSB first, no
delimiters.

16 bit BE NanoDAQ_serial, Packet_Num, CH1MSB
CH1LSB CH2MSB CH2LSB CH3MSB…..
CHNMSB CHNLSB

32 bit representation of serial
number identifies start of the
packet then a 32 bit packet
number, autoincrmenting with each
packet. 16 bit data, no delimiters,
MSB first.

Figure 4.2, Data Packet Protocol, UDP Channel.

4.2.4 UDP Data Rate.
The UDP data rate is much the same as the TCP data rate in its configuration and use, so all the
TCP data rate information is applicable for UDP.

4.2.5 Control Via UDP.
A positive acknowledgement is returned as ‘**’ and a negative acknowledgement as ‘!!’.

The argument regarding loss of acknowledgements in the data stream holds good for the UDP
channel, and it is recommended that a ‘Stream Off’ or ‘Standby’ is sent before any other
command.

Page 9

4.2.6 IENA specification
The device supports the option to output data in the IENA specification data packet format. This
specialised format arranges the data in a specific format containing various different information.
Data packets formatted in this way start with a specific header format before any data in the
packets.

Key Size Time Status Seq Data 0 - Data 63 Temperature Scanner

Status
End

16
Bits

16
bits

16
bit

16
bit

16
bit

16 bits 16 bits 32 bits - 32 bits 32 bits 16 bits 16
bits

 Frame
size

Time in
microseconds

Set at
0x0000

Rolling
16 bit

counter

Byte order
3-2-1-0

 Byte order
3-2-1-0

Byte order
3-2-1-0

 0x
DEAD

Starting with the 16 bit key field, this key tells the user information about this packet, in this case
the key is created so that the most significant 4 bits is the manufacturers ID, the next 4 bits is the ID
of the device (0 for the flightDAQ and 1 for microDAQ), and the final 8 bits denotes which IENA
datastream this data is from – on the Chell data acquisition family of devices this is always 1.

The next 16 bits of the data packet is the size of the packet, this is the total number of bytes in the
IENA header and the data blocks.

The next section of data in the data packet is the time, this is 48 bits long and contains the time that
has elapsed in microseconds from the 1st of January of the current year. For this to work accurately
IEEE 1588 has to have been enabled and the device has to be synchronised with a grandmaster. It
is also possible for the user to get the time from a PC on the embedded webserver, this is however
less accurate than using a IEEE 1588 synchronised time.

The next 16 bits is a reserved STATUS word with a value fixed at 0x0000.

Following this is a rolling 16 bit sequence number that counts how many packets have been sent in
this data stream, this is a rolling counter, so if the packet sent is greater than the maximum value
this field can hold then it will reset to 0 and start counting again.

After the header is finished the next part of the packet is the main data in channel order, this is 32
bit floating point big endian data. There is one 32 bit value for each channel of data.

The data is followed by a single 32 bit big endian scanner temperature value.

The scanner status is a 16 bit field of which is used to show various details about the scanner and
device. The least significant bit will show if the scanner is in purge mode or not, the second bit will
show if the device has been time synchronised and the third bit will denote if the device has been
IEEE 1588 synchronised or not. Further bits are reserved for future use and are set as 0.

The final 16 bits are an end field, the value of this being 0xDEAD – this signals that all data has
been transmitted.

Page 10

4.3 CAN
4.3.1 Overview.
The CAN channel is somewhat different to the above channels, in that it is not a simple serial
communications channel, the data being sent in discrete chunks on specified message identifiers.

4.3.2 CAN Baudrate.
The microDAQ offers a single ‘standard’ CAN bus connection running at a selectable baudrate, the
user having access to the values used for the microDAQ’s microcontroller CAN timing registers to
enable customising of sample point and jump width. Default values for a number of common
baudrates (1M, 500k, 250k, 125k, 100k, 50k (Hz)) are available from the microDAQSetup program.
The values are calculated based on the microcontroller CAN peripheral clock of 60MHz. Users
should bear this in mind when calculating suitable values for BRP, TSEG1, TSEG2 and SJW for
their own physical network implementation.

4.3.3 CAN Protocol.
Two separate protocols are available from the setup – either multiple or single message. For the
former, the microDAQ is allocated a fixed message for each group of 4 pressure channels, ie for a
64 channel scanner, 16 discrete CAN message identifiers are required. Alternatively for a more
economical use of identifiers within a system, a single message id may be used, with all channels
sent over this message sequentially. Channel numbers are positively identified with a channel
identifier byte within the message.

For the multiple message option, data are sent on 8 byte messages, 4 channels per message – the
pressure channels associated with a particular message number being fixed. The 2 most
significant digits of the message identifier are user selectable via the setup program – so for
example the identifier for channels 1-4 for user selected 0x22n would be 0x220, and the identifiers
for channels 5-8, 9-12 etc. follow on incrementally from this first identifier as shown in Figure 4.3. It
is the user’s responsibility to avoid overlap of message identifiers in a multiple microDAQ
installation.

Data are two bytes unsigned, scaled to +/- full scale, ie 0x0000 might represent –5psi, 0xffff +5psi.
The data are user selectable as 16 bit big or little ended. An example of the packing is illustrated in
Figure 4.3. Use of the 16 bit little ended option is recommended as it requires least processor
overhead within the microDAQ unit.

The single message identifier option is included to reduce the number of message id’s required
within a system. Data are packed in 7 byte messages as 3 channels per message with one
channel identifier byte. This identifier byte is incremented for each message in the sequence,
starting at 0x00 for channels 1,2 3, then 0x01 for channels 4,5,6 etc. Odd leftover channels (eg 16
channels/3 = 5 full messages plus a message with a single channel and two ‘leftovers’) are set to
0x0000 and should be discarded. Figure 4.4 shows the structure of a message for the single
message identifier protocol. A selectable inter message delay of between 1ms and 200ms is
available to match message generation timing to the user’s system. Note that it is the user’s
responsibility to select appropriate delays with respect to channel rate and CAN bus baudrate.

Page 11

 Message ID

Data Byte 0x220 0x221 0x222 0x223 0x224 0x225 0x226 0x227

7
CH4
MSB

CH8
MSB

CH12
MSB

CH16
MSB

CH20
MSB

CH24
MSB

CH28
MSB

CH32
MSB

6
CH4
LSB

CH8
LSB

CH12
LSB

CH16
LSB

CH20
LSB

CH24
LSB

CH28
LSB

CH32
LSB

5
CH3
MSB

CH7
MSB

CH11
MSB

CH15
MSB

CH19
MSB

CH23
MSB

CH27
MSB

CH31
MSB

4
CH3
LSB

CH7
LSB

CH11
LSB

CH15
LSB

CH19
LSB

CH23
LSB

CH27
LSB

CH31
LSB

3
CH2
MSB

CH6
MSB

CH10
MSB

CH14
MSB

CH18
MSB

CH22
MSB

CH26
MSB

CH30
MSB

2
CH2
LSB

CH6
LSB

CH10
LSB

CH14
LSB

CH18
LSB

CH22
LSB

CH26
LSB

CH30
LSB

1
CH1
MSB

CH5
MSB

CH9
MSB

CH13
MSB

CH17
MSB

CH21
MSB

CH25
MSB

CH29
MSB

0
Ch1
LSB

Ch5
LSB

Ch9
LSB

Ch13
LSB

Ch17
LSB

Ch21
LSB

Ch25
LSB

Ch29
LSB

Figure 4.3, Example of CAN multiple message packing for a 32 channel

scanner, using the 16 bit little ended data protocol – base identifier 0x220.

Data Byte Content

6 CH3 - MSB

5 CH3 - LSB

4 CH2 - MSB

3 CH2 - LSB

2 CH1 - MSB

1 CH1 - LSB

0 0x00

Figure 4.4, Example of the CAN single message protocol using 16 bit little

ended data– first message (ie channels 1,2,3)

Page 12

4.3.4 CAN Data Rate.
The data delivery rate is selected from the setup program, and the following values are available
(Hz) – 1, 2, 5, 10, 25, 50, 100, 312, 500, 625, 750, 1000. Although the system endeavours to deliver
the rate with maximum accuracy, ultimate responsibility for data timing lies with the user’s host
system.

Care should be taken in selection of delivery rate, as it is possible to select unfeasibly fast data
delivery for a particular bus baudrate, resulting in data loss. Similarly since the scanners are
addressed at a fixed channel rate of 20kHz (Gen1) or 50kHz (Gen2), requesting a data delivery of
more than 20k/No. Channels or 50k/No. channels - ie 312Hz for a 64 channel Gen1 scanner -
wastes resources and in some cases can cause the microDAQ to hang, requiring a power cycle.

4.3.5 Control Via CAN.
The user command set is supported over the microDAQ’s CAN channel. The specification and
function of the commands are detailed in section 2 above, however the CAN implementation is as
follows.

The incoming message number is selected by the user from the front end software, though is
constrained to be relative to the outgoing data base message identifier. The offset from the base
identifier may be selected as being +0x10, +0x20, +0x30, +0x40 or +0x50. For example the base
data message identifier of 0x220 might be set up to receive commands over CAN on message
0x230 (0x220 + 0x10).

In addition to the incoming message offset, the user may select whether the incoming command is
acknowledged or not. The user command is a delimited 5 byte message that includes a block
parity check, as shown in Figure 4.5. If the command is received without detected error, and the
acknowledge option has been selected, MicroDAQ will respond to a user command with a positive
acknowledge byte (‘*’ or ASCII 42). Alternatively, if the command is received incorrectly it will
respond with the negative acknowlege byte (‘!’ or ASCII 33). The acknowledgement is sent as a
single byte message with identifier one greater than the receiving message. For the above
example, the acknowledge will be sent on message 0x231.

Data Byte Content

4 < (ASCII 60)

3 Parity

2 Parameter

1 Command

0 > (ASCII 62)

Figure 4.5, Data Structure of the CAN Incoming Control Message.

Page 13

4.4 Internal RAM.
4.4.1 Overview.
Data acquisition to internal RAM allows for fast acquisition without the potentially limiting factor of
external comms hardware (e.g. network hubs, PC CAN interfaces, etc.). Data can be acquired at
whatever speed is necessary and then dumped to the host PC as a post-acqusition task.

4.4.2 Internal RAM Protocol.
The data protocols available for internal RAM storage are 16bit little endian or big endian only.
Engineering unit conversion should be performed on the host PC once acquired data has been
dumped to the PC.

4.4.3 Internal RAM Data Rate.
The rate at which the data is acquired into Internal RAM is determined by the rate user command,
and the following values are available (Hz) – 1, 2, 5, 10, 25, 50, 100, 312, 500, 625, 750, 1000.

As with other communications channels, care should be taken not to request a data delivery of
more than 20k/No. channels (ie 312Hz for a 64 channel scanner).

4.4.4 Internal RAM Dump.
Data can be dumped from internal RAM on any of the other three available communications
channels. The format of the data dump is designed to be (almost) the same as if data was being
streamed out of that communications channel. So for RS232 & TCP the format of data is the same
as the 16bit LE or BE protocol formats detailed in sections 4.1.3 & 4.2.3 above (ie. Channel data
preceded by a 3 byte header (0x00, 0xFF, 0x00). For CAN the format of the data is dependant on
the selected CAN message type (single message or multiple message IDs) as detailed in section
4.3.3 above.

In addition to the above, an internal RAM dump sends a 9 (or 6) byte header, which is sent as soon
as the ‘Start Internal RAM Dump’ user command has been received by the microDAQ. This header
has the following format (note the first three bytes are not sent if the comms channel used for the
dump is CAN).

Data Byte Content

8

Total size of data
dump (in bytes)

7

6

5

4 Blocks per op

3 Number of channels

2* 0x00

1* 0xFF

0* 0x00

Figure 4.6, Data structure of Internal RAM dump header packet
(bytes marked * are not sent when dumping via CAN comms)

‘Blocks per op’ details the number of cycles of ‘n’ channels that are sent in one transmission
packet – this is dependant on the number of channels being acquired (byte 3 in header above) and
is irrelevant for CAN (always set to 1). After each packet is sent, the microDAQ waits for a
handshake to confirm that the packet of data has been received at the host PC end. The dump
handshake user command should be sent by the host PC to facilitate this (Note to avoid deadlock,

Page 14

the microDAQ will wait for a maximum 10 seconds for the handshake before auto sending the next
packet). A handshake is also expected after the header packet has been sent by the microDAQ.

5. Valve Control user commands

The flightDAQ unit contains both microDAQ hardware and additionally contains two solenoid
valves to control the shuttle of the Measurement Specialties scanners that are part of the flightDAQ
unit and also contains an electrical drive signal for controlling an external purge valve. The
microQDVP module is an accessory to the microDAQ unit that also contains the valving and drive
signal.

The control of these valves is done via the same command protocol as with the other microDAQ
commands (see previous sections above). For the microQDVP a separate comms connection has
to be made to the module (via RS232, Ethernet or CAN), whereas for the flightDAQ the commands
are just an extension of the standard command set and can be transmitted all through the same
comms connection. These commands change the valves accordingly to perform a zero function or
a purge function and also to simply move the shuttle valve between CAL & RUN

Here follows the description of those user commands:

Command Byte,
Char/
ASCII

Parameter Description

Zero W/87 0-255 – number of
seconds to wait in
CAL before switching
back to RUN

Performs a Zero function:

1. Shuttle scanner to CAL mode
2. Wait for configured time (from Parameter byte)
3. Shuttle scanner to RUN mode

Purge U/85 0-255 – number of
seconds to wait
whilst Purging

Performs a Purge function:

1. Shuttle scanner to CAL mode
2. Switch on external purge valve
3. Wait for configured time (from Parameter byte)
4. Switch off external purge valve
5. Shuttle scanner to RUN mode

Shuttle Y/89 0 – shuttle to CAL
1 – shuttle to RUN

Moves the scanner shuttle valve between CAL and RUN modes.

	Contents
	�1. Introduction.
	�2. User Command Protocol.
	2.1 Command Packet.
	2.2 Acknowledgement.
	2.3 User Commands.

	�3. Status Data Format.
	�4. microDAQ Communication Channels.
	4.1 TCP
	4.1.1 Overview.
	4.1.2 Connection.
	4.1.3 TCP Protocol
	4.1.4 TCP Data Rate.
	4.1.5 Control Via TCP.

	�4.2 UDP
	4.2.1 Overview.
	4.2.2 Connection.
	4.2.3 Chell UDP Protocol
	4.2.4 UDP Data Rate.
	4.2.5 Control Via UDP.
	4.2.6	IENA specification

	�4.3 CAN
	4.3.1 Overview.
	4.3.2 CAN Baudrate.
	4.3.3 CAN Protocol.
	�4.3.4 CAN Data Rate.
	4.3.5 Control Via CAN.

	�4.4 Internal RAM.
	4.4.1 Overview.
	4.4.2 Internal RAM Protocol.
	4.4.3 Internal RAM Data Rate.
	4.4.4 Internal RAM Dump.

	5. Valve Control user commands

